道路橋の維持管理

高度経済成長期に集中的に整備されたわが国の道路橋は、今後老朽化が急速に進行することになるが、近年、各地の道路橋において重大な損傷事例が発生している。

本講習では、実際に重大損傷が発生した道路橋の3事例について、損傷状況や対応経緯等の紹介と、事例や関連事項に関する解説を行った。

また、東京都江東区が管理する道路橋を現地見学し、点検や補修等、維持管理していく上で必要な視点等について解説を行った。

事例紹介（以下、敬称略）

林 - 俊彦 千葉県君津市建設部土木課副課長
坪田 - 洋昭 長野県建設部道路管理課維持補装係

解説

玉越 - 隆史 国土地理院国土地理院総合研究所

村越 - 潤 (独) 土木研究所構造物メンテナンス研究

センター橋梁構造研究グループ主任研究員

現地調査

原 - 佳司 東京都江東区土木部道路課橋梁係長

1. 事例紹介

①青木新橋（千葉県）：アーチ橋のPC鋼管破断

・青木新橋は、昭和48年（1973年）に架設された下路式ローゼアーチ橋（日本初採用）であり、橋長68.1m、吊橋は1組2本で構成され、上下各10カ所、計40本で下弦材を支持。

・平成20年10月23日午後2時30分頃、通行者が吊橋の破断を発見し、市に通報。市では、通行規制のための準備や告知を実施し、同日午後10時から車両通行止めを実施した。

・原因究明のため、採取したPC鋼管を用いて各種試験を実施したところ、鋼管を保護しているシース管が破断し、手部が劣化や振動によって外れ、塩分を含む水分が侵入し腐食環境が生じたこと、シース管やさや管と鋼管との間に電気的接触による異種金属接触腐食が生じたことに

ようって、断面欠損し破断に至ったものと判明した。

・その後、仮吊橋の設置等による応急復旧、耐震補強等を含む恒久対策を実施し、約11ヶ月後に通行止めを解除。復旧対策にあたり、国土地理院総合研究所および（独）土木研究所の技術的支援を得て検討した。

・施工時の図面や写真等の施工記録等が保存されていたことが復旧方法等の早急な検討を可能にした。

②千葉橋（長野県）：桁橋の床座抜け落ち

・千葉橋は、松本市の郊外に位置し、昭和10年（1935年）に架設された単純RCT桁橋に段階的に挙架や架け替えがなされており、橋長1266m、10年架設（旧橋）部分においては、主桁、床版の下面に鋼板接着の補強がある。

・約1年前前から廃業の落ち込みが確認されており、修繕に着手しようとしていた矢先の平成21年10月30日5時50分頃、15m×12mの大きさの抜け落ちが発見された。

・大型の鋼板と合材を用いて朝の通勤通学時間帯への緊急対応を実施し、その後、段差解消のため、はっきりとヌルヌルでの調整を実施して交通を確保した。

・長野県としては、管理する鋼板接着補強がなされた全55橋の浮き調査を実施し、面積2割以上の浮きを10橋で確認した。千葉橋では、11月25日から全面通行止めして調査を進め、12月11日から東から西への一方通行に通行規制を変更。

・恒久対策として、22年11月10日から23年3月21日まで全面通行止めを行い、旧橋部分の架け替えを実施。

・劣化メカニズムとしては、上からの浸透水の凍結融解や大型車両などの荷重作用下、下は鋼板接着補強がなさ
れていて水分が抜けにくく、床版の土砂化、クラック、鋼板の浮き、開口に連なるものである。

③ 生月大橋（長崎県）：鋼トラス橋の斜材き裂
・生月大橋は、平成3年3月架設された平戸島と生月島を結ぶ橋で長さ960mの3径間吊橋トラス橋である。21年12月8日午後、梁長点検中に斜材にき裂が発見された。
・損傷状況としては、海潮フランジ面に最大1.4mm、長さ24.5cm、生月島側ウェブ面に最大幅4mm、長さ51cmのき裂、道路側フランジ面に長さ2cm、長さ7.5cmの表面損傷が発生していた。
・き裂の進展による部材の破断防止と本復旧までの安全確保のため、ストップホール、添接板の設置、PC鋼棒による締め付けによる緊急処置を実施。
・その後、ひずみ計や加速度計の設置による監視を行いつつ、本復旧工法の比較検討を行い、損傷した部材を取り替える案を取り採用。
・22年4月～6月の3カ月間の全体工程で、設計、施工試験、工場製造、計測監視、現地施工（軸力導入、斜材切断・撤去・設置等）等の本復旧を実施した。

2. 解 説
玉越：道路橋の点検と管理
・橋梁の点検がいかに難しいかということを紹介したい。
・橋梁の劣化形状や要因が非常に多様であることから、例えば、腐食の発生については、塩分が積もる環境下、継続による内圧の下だけへの発生、構造的に一部の構造物に発生するなどの事例があり、またコンクリートひび割れについては、乾燥収縮、疲労、アルカリ骨材反応などの要因がある。
・また一つは、外観形状や損傷の深さが一致しないということであり、例えばコンクリートにひび割れが見られないが、変色が見られ、中のPC鋼棒が破断している事例があった。さらには、政権的な影響をもつような場合があり、非常に局部的な部材における現象であることがある。
以上ののようなことが橋梁の維持管理を難しくしている。
・このような状況を踏まえ、今後克服すべき課題としては、定期的な点検目視は最も有効かつ不可欠な点検であるが、外観目視の限界をカバーすること、知らない事象や過去に事象が無い事象は今後も増えることではなく、何か起こるかもしれないという想像力、マクロとミクロ両方の観点から劣化を巡る観察が必要である。
村越：鋼橋の疲労について
・鋼橋に起こっている疲労損傷について紹介したい。鋼橋の疲労は、荷重が繰り返し作用することによって、部材と溶接の接合部などの応力が集中する部分にき裂が発生し、進展するという現象である。き裂が進展すると、発生部材によっては脆性破壊に至り、橋の安全性に重大な影響を及ぼすおそれがあることを認識しておく必要がある。
・具体的なき裂の発生部位としては、I桁橋では主桁と横桁の交差部に比較的多く見られるが、主桁にき裂が発生している場合は特に注意する必要がある。トラス、アーチでは斜材や斜材等の接合部、鋼架橋では低さ特にUリップ周辺、例えばデッキプレートとUリップの溶接部、Uリップつなぎ合わせの突き合わせ溶接部等の事例が見られている。
・き裂の点検・調査は目視が基本になるが、塗膜を剥がさないと特定できない場合や対策を考える上で溶接内部の状態や挙動の確認が必要な場合など、目的に応じて非破壊検査技術を含めて適切な方法を選択する必要がある。
・また、ひずみ等の挙動計測についても線維の指定、目的に対応した調査手法、測定位置等の選定が重要である。

3. 現地実習（大栄橋、弁天橋）
・大栄橋は、昭和4年に架設された懸索橋約38mの鋼トラス橋であり、弁天橋は、7年に架設された懸索橋約23mの鋼桁橋である。いずれも36年に東京都からの移築によって江東区が管理しており、定期的な点検を実施し、その結果を踏まえ、これまで補修・補強を実施しているところ。

・近年の点検では、大栄橋においては支承部の発錠や断面欠損、桁部の対数曲げのため、変形など、弁天橋においては床版の数カ所に鉄筋露出と当該部位での剥落や酸化剥落などで確認されていることが紹介された。
・解説の両橋からは、各橋梁の状況を踏まえた点検時の留意点、例えば、トラス斜材のコンクリート底面込み部や、併用後の設置と考えられる付属物周辺への注意等が指摘された。

文責：国土交通省道路局国道道防災課道路保全企画室
課長補佐 寺沢直樹