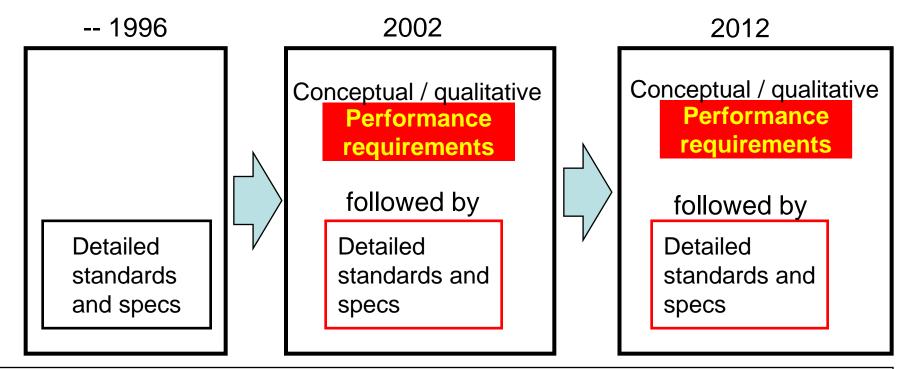
2002 & 2012 Specifications for Highway Bridges


- 1. International trend in promoting performance-based codes to ease trade barriers (ISO2394 (1998))
- 2. Flexible acceptance to innovative technologies in construction projects to meet diversifying technical proposals
- 3. Needs for durable and maintenance-friendly structures

Advent of Performance-based Specifications

- 1) From prescriptive to performance-based: Required performance criteria were philosophically set out, as requested by ISO2394
- 2) Performances comes first and mandated. Standards are regarded as acceptable solutions. Alternatives can be confirmed to see if the alternatives offer equivalent or greater performances than the standards.
- Prescriptions for durability demands on fatigue in steel members, and chloride ingress in concrete members, durable RC deck slab design etc were shown.
- 4) A maintenance planning and relevant countermeasures are required in initial design.

Need to articulate more regarding performance requirements and evaluation procedures

- To accept professional ideas and proposal in structural types, modules, and materials --- Performance requirements have to be shown for competent agency to check their proposals.
- Detailed standards and specs are also necessary for competent agency to check their proposal by comparison in terms of reliability

e.g. Hierarchy of the Specifications

Design Principles

Importance, Loads, Design Ground Motions, Limit States of Bridges, Principles of Performance Verification

Detailed Performance Verification Evaluation of Limit State of Members; RC and Steel Columns, Foundations, Bearings, and Superstructures, Isolation Design; Unseating Prevention Systems Requirements (Mandatory and unaltered)

Acceptable Solutions (Can use other methods after an Appropriate Verification)

e.g. Hierarchy in Each Article

Concrete bridges --- Chapter 4 Details

Article 4.4.1 Cover depths

1.Cover depths shall be deeper than those shown in Table-4.4.1.

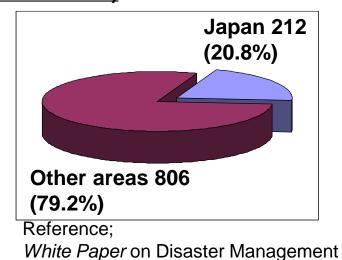
2. Cover depths also shall be larger than the diameter of reinforcement bars.

Types of members	Deck slabs, parapet walls, slab	Girders		
		Factory-made precast girders	Others	
Minimum depths	30mm	25mm	35mm	

Concrete bridges ---- Chapter 6 Details

Article 6.6.1 Cover depths

1.Cover depths shall be designed to secure bonds between concrete and reinforcement, prevent from corrosion of reinforcement, and make reinforcement insensitive to fire. <<**Performance criterion>>**


2. Article 1 is satisfied when cover depths are given larger than the values specified in Table-6.6.1 and the diameter of reinforcement. *<<Acceptable solutions>>*

Sharing problems

- Fast construction
 - e.g.
 - Urban Areas
- Maintenance friendly design

Maintenance-friendly structures

Frequency of earthquakes over M6 (yr1999-2008)

Fatalities in recent large quakes

Mo/Yr	Name	М
Sept 2003	2003 Tokachi-Oki	M8.0
Oct 2004	2004 Niigataken-Chuetsu	M6.8
Mar 2005	Hukuokaken-Seihouoki	M7.0
Mar 2007	2007 Notohanto	M6.9
July 2007	2007 Niigataken- Chuetsuoki	M6.8
June 2008	2008 Iwate-Miyagi Nairiku	M7.2

Source;

Japan Meteorological Agency www.jma.go.jp/

Earthquake		Collapsed	Flood	Damaged
1964 Niigata	(M7.5)	8	1972 Baiu Front	1,572
1968 Tokachi	(M7.9)	0	1982 Typhoon	586
1978 Izu Island	(M7.0)	0	1983 Typhoon No.10	422
1978 Miyagiken- oki	(M7.4)	1	1985 Baiu Front	212
1982 Urakawa- oki	(M7.1)	0	1990 Typhoon No.19,20	270
1983 Nihonkai- chubu	(M7.7)	0	1991 Typhoon No.18	145
1993 Kushiro- oki	(M7.8)	0	1993 Typhoon No.13	108
1993 Hokkaido- NW	(M7.8)	0	1995 Baiu Front	110
1994 Hokkaido-E	(M8.1)	0		
1994 Sanriku	(M7.5)	0		
1995 Hyogoken-nanbu	(M7.2)	9		

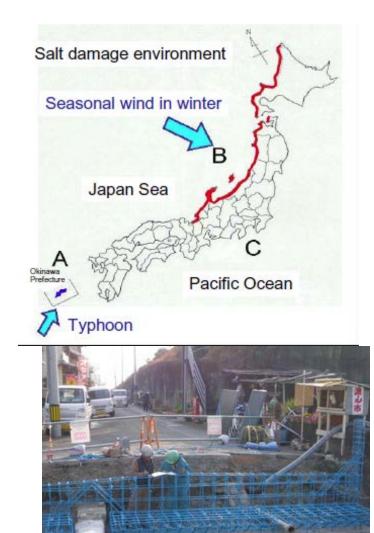
Typhoon No.9, Sep 2007


Source;

http://www.nikkei.co.jp/news/main/im20070 907SSXKF007807092007.html

Severe cold to tropical hot weather

Not only thermal effects but also humidity and chloride conditions are severe to the durability of bridges.



A further protection is required for bridges built on the shoreline

Is

2

3

(A1) Fatigue fracture at welding parts of U-rib and deck plate

(A2)

Fatigue fracture in a steel main girder, Yamazoe Bridge, R25, constructed in 1971.

Anatomic survey for Kuretsubo overpass, R7, constructed in 1965, that suffered from salt attack. (C)

ASR